当前位置:众信范文网 >专题范文 > 公文范文 > 前沿技术创新与新兴产业演进规律探析

前沿技术创新与新兴产业演进规律探析

时间:2022-10-28 12:45:03 来源:网友投稿

摘 要:本文通过追溯人工智能从萌芽、发展到实现产业化应用的历史,揭示了技术创新与新兴产业演进的一般性规律。前沿技术的创新路径存在高度的不确定性,在技术发展初期出现潮涌现象并呈现多条技术路线竞争的格局,其发展需要多学科技术的支持,受到多领域科技发展的启发。新技术的产业化往往要经历曲折、漫长的过程,需要来自互补产品与互补技术协同演进的支撑,其在国民经济中发挥作用也需要互补技术的进步与互补产品的发展。笔者通过分析提出,政府可以在技术推动和需求拉动两方面对新技术的产业化及其广泛应用发挥重要作用;人工智能技术既有其优势,也存在其不足和滥用风险;未来的创新与生产更可能是人工智能与人类的高度协作。本文从研发支持、发展环境建设、传统产业数字化改造、市场支持、创新创业、科技伦理治理等方面提出加快人工智能产业化的对策建议。

关键词:前沿技术;新兴产业;人工智能;产业化;通用目的技术

中图分类号:F410  文献标识码:A

文章编号:1000-176X(2019)12-0030-11

科学技术是第一生产力,但是只有当人类从自发到自觉地发现和运用自然规律,科学技术才真正爆发出它的洪荒之力。针对英国工业革命之后人类取得的巨大经济成就,经济史统计学家麦迪森[1]指出,19世纪之前的世界人均GDP增长缓慢,直到19世纪20年代世界经济发展才呈现更强劲的势头。马克思和恩格斯曾这样形容工业革命之后的技术发展:“资产阶级在它的不到一百年的阶级统治中所创造的生产力,比过去一切世代创造的全部生产力还要多,还要大”[2]。然而,科技的发展从来不是一帆风顺的,从最初技术的萌芽到产业化创造出巨大的经济价值往往需要经过曲折漫长的历程。2016年谷歌旗下DeepMind公司的AlphaGo人工智能系統战胜人类世界围棋冠军李世石,人工智能真正从实验室进入生产和生活并成为投资的风口,美国、日本、欧洲、中国等纷纷提出自己的人工智能战略。实际上,从人工智能理论的提出到大规模产业化应用也已七十年有余,且经历了多次技术路线的变换。可以说,人工智能技术创新与产业发展的历史为我们提供了一个近距离观察前沿技术创新与新兴产业演进规律的契机。

一、前沿技术创新的规律

新兴产业是由前沿技术不断发展进而工程化、产业化并不断壮大形成的。前沿技术如同其他现代科学技术一样,不仅是由新发现的基本效应或自然规律所推动的,更是以基本效应或自然规律为核心、集成和融合其他领域的科学技术而形成的复合技术或技术集。而前沿技术的工程化、产业化过程更是离不开相关技术和产业的支撑,某一项前沿技术发展实际上是与其他相关技术协同演进的结果。前沿技术在工程化、产业化过程中,表现出在技术路线、商业模式上的巨大不确定性,历史地考察新兴产业的发展历程就会发现,在早期阶段,通常有多条技术路线交替出现、相互竞争、此起彼伏。

(一)技术演进路线的不确定性

科学发现和技术发明是新兴产业形成与发展壮大的基础,但技术演进的路线从来都不是直线向前的,从最初的基础科学被提出到最终产业化主导设计的确立都面临着巨大的不确定性。弗里曼和苏特[3]划分了由低到高六种与创新相联系的不确定性程度,相比之下,产业化之前的科学研究与产品创新的不确定性要比产业化之后的产品改进所面临的不确定性大得多,其中基础性研究和基础性发明的不确定性最高,他们称之为“真正的不确定性”,其次为重大的开创新产品创新、公司以外开创性的生产工艺创新的“甚高的不确定性”以及基本产品创新、在本公司或系统中的开创新生产工艺创新的“高不确定性”;公司已有产品的新“一代”产品的不确定性已经降到中等水平,获得专利、仿制、产品和工艺改进、成熟生产工艺的早期采用的不确定性较小,而新“型号”、产品的衍变、为创新产品作代理推广(销售)、已有生产工艺创新的晚期采用及在本企业中特许授权的使用、新型号较小的技术改进的不确定性最低。这种对不确定的分类意味着,一种技术路线在研究开发阶段的失败率要比进入较为成熟的商业开发之后大得多。

技术创新路径的不确定性在产业化之前表现得尤为明显。林毅夫[4]指出,当新的投资机会出现时,企业会像浪潮般涌向这个领域,出现所谓的潮涌现象。实际上,潮涌现象不仅发生在产业领域,在技术创新领域同样存在。当科技工作者发现一个具有重大前景的研究领域时,其会最先蜂拥而入;政府、科学基金会、风投机构、企业继而发现技术的产业化前景也会加大研发投入,使研发阶段的潮涌现象比产业化阶段的更为突出。在技术产业化之前或竞争前阶段,新科技的基本原理尚不清晰,需要在摸索和试错中不断向自然规律靠近。由于科研机构、科研人员的学术背景和研究基础大相径庭,他们会利用各自的优势从不同的角度对自然现象作出解释、对产品原型进行构建,因而就会出现多种不同的技术路线先后涌现、相互竞争的局面。人工智能技术发展的历史非常典型地呈现出技术演进路线的不确定性、潮涌现象以及多条技术路线竞争的特征。

19世纪50年代,科学家们尝试应用计算机程序进行抽象化、符号化的数学证明,并取得了一定的成功。纽埃尔和西蒙在达特茅斯会议上展示的首个人工智能程序“逻辑理论家”能够证明《数学原理》前52个定理中的38个,1963年“逻辑理论家”已能够证明全部的52个定理。科学家们在用计算机进行平面几何定理证明和不定积分式计算方面也取得了一定的成功。但是随后人工智能系统在数学定理的证明方面陷入瓶颈,在自然语言翻译方面也遭遇滑铁卢[5]。20世纪60年代初期,美国计算机科学家费根鲍姆首先将视线从抽象的通用证明方法转移到具体的专家知识上来,认为人工智能应在知识的指导下实现,这一构想催生了专家系统(Expert System)。专家系统是计算机基于输入的专家知识进行自动推理,以特定领域专家的角度解决实际问题的智能机器。最初的专家系统主要应用于学术领域,如1965年斯坦福大学在美国国家航天局的要求下研制的具有丰富化学知识的DENRAL系统[6],其能够根据质谱仪的数据推知物质的分子结构,并被应用于世界各大学及工业界的化学实验室中。在此之后,数学家助手MACSYMA、语音识别专家HEARSAY等系统的发展使专家系统受到学术界及工程领域的广泛关注。到20世纪80年代中期,已出现大量投入商业化运行的专家系统。但是专家系统的不足也是非常明显的:其运作需要大量外界的知识输入,耗时耗力,而且从一组专门知识中推演出的逻辑规则只能适用该特定领域,不能解决需要极其复杂逻辑推理的常识问题。面对专家系统技术路线撞上的“高墙”,人工智能科学家们继续沿着不同的路径进行探索。在20世纪80—90年代的10年间,形成了符号主义、连接主义和行为主义三大学派鼎足而立的格局。

推荐访问: 探析 演进 技术创新 新兴产业 规律